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The Finite Element Method for Infinite Domains. I 

By Ivo Babuaka* 

Abstract. Numerical methods (finite element methods) for the approximate solution of 
elliptic partial differential equations on unbounded domains are considered, and error 
bounds, with respect to the number of unknowns which have to be determined, are proven. 

1. Introduction. The finite element method, its theory and practice, has recently 
become of interest in numerical analysis, see e.g. [1H13], and the papers of Aubin, 
Birkhoff, Bramble, Ciarlett, Schatz, Schultz, Varga, etc. 

The theoretical analyses of the finite element method have been concerned with 
bounded domains. Strang and Fix, [1], [2], have, however, analyzed the finite element 
method with respect to an infinite domain (the space R.), but their procedure re- 
quires the solution of an infinite system of linear algebraic equations. 

This paper will deal with the problem of finding, by the finite element method, 
an approximate solution of a boundary value problem for elliptic partial differential 
equations on an infinite domain by solving only a finite system of linear algebraic 
equations. 

The approach will be shown on a model problem. Our task will be to find the 
solution of the equation (weak solution) 

(1.1) -Au + u= f 

on R.,, where u E W,(R,) and f E W,(R,), k 2: 0. 
We will show that the rate of convergence on compact sets of R. is practically 

the same as the rate of convergence for boundary value problems on bounded do- 
mains. The rate of convergence will turn out to be determined by the number of 
unknowns in the system of linear algebraic equations. 

Our approach may be easily generalized to the case of an elliptic differential 
equation of order 2m, provided that the coefficient of the zero order term of the 
equation is bounded above and below by positive constants. 

We will analyze only the case when = R. By combining the approach described 
above with the results concerning bounded domains (see e.g. [6H ll), it is easy to 
get the corresponding results for unbounded domains with bounded boundary. 

Throughout this paper, let x denote the n-dimensional vector in R., i.e. x 
(xl, ,x) where xi E R, i = 1,2, 29 , n. 
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Let 11x112 = - x, and Ixi = E-i1 lxl. If a E RJ?, let x + a (xl, * ,, 
Xi + a, x+,, -, x,). Let k denote a multi-integer, i.e. k _ (kj, *--, ), where 
ki is an integer, i 1, 2, * * *, n. Let 11k12 = i kPi and IkI = Ad 1 IkI. Define the 
inequality k 2 0 to mean ki 20 , i = 1, 2, ... , n. Let C denote a generic constant 
which may have different values wherever it appears in the text. 

2. The Spaces. In this section, we shall introduce the spaces which will be 
used in the paper. 

Definition 2.1. Let the space W2,,,(R,), with I ? 0 an integer, As real, be the Banach 
space of all functions u such that 

(2.1) |IUIWs,,z(R.) = f e2' e (D'u) dx < co, 

where Dk = 0k.+k,+ . +k/&,4 * * x,. For M = 0. we get the usual Sobolev space. 
For ,u p 0, we get a weighted Sobolev space. Note that L2(R,) = W2?0(X). 

Let us now introduce the so called B splines. For x E R1, let 

(2.2) o(x) = 1, [xl <i, 

= 0, ixI 2 iv 

Let t be an integer 2 2. Starting with t = 2, we recursively define (o,(X) as 

(2.3) 0,(x) = VA(x) * ..-1(x), t 2 2, 

where * denotes convolution. 
Now, forxE R., x--(xl, * * *, x,,), define 

(2.4) 0,W(x) = VAXg(x,), t 2 1, 
i-i 

and 

(2.5) P, ,(x) = Vt-i j)11 i(xi), t ? 2, = 1, = I , n. 

Let us mention some of the well-known properties of these functions which 
will be important later on: 

(1) ,g(x) 2 0, (x) 2 0 for all x E 1,,, 
(2) vg(x) and ,os.,(x) have compact support. 
(3) Denoting by F(pXoa), the Fourier transform of 0(x), we have, with 

a= ((T1 * .a" 

(2.6) F(p ( ) 

(2.7) F(pg,)J(or) = (sin; 4e Hf ( arc ) 

(2.8) =o(x) - _-., {(x) + (opi(x + 1). 

In the following, let U and V denote the functions defined on the set of all multi- 
integers k. 
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Definition 2.2. Let the space Q I.h, = 0, 1, h > O. , real, be the space of all functions 
U such that 

(2.9) i 

ulo.. = hz IU(k)i2e24IhI < C 

(for I = 0) and 

(2.10) 

II Ujjla' h = U(k + 1,)- U(k)l1e29^lk + 2 I U(k)l1e2 20h] < A 

(for I = 1). 
LetUE QU .for I O and l 1. Define the mapping S, j2 1, by 

(2.11) S^U= zJ U(k)(pj(x/h-k), 

and the mapping St", j2 2, by 

(2.12) sh, iU , U(k)vi. ,(x/h -k). 
h 

THIEoRm 2.1. For I;&I sufficiently small, there exist constants C1 and C2, 0 < C1 < 
C2 < co, such that 

(2.13) C111 UIIQ01.& =6 IIS:Ulw..,a1(n.) ? C2j1 Ujloa,&, I = 0, 1, J > 1 

and 

(2.14) Clll Ujjo^.-1 k ||S9 jjjU||W,..(R.) :9 C21l U||100094 

Proof. 1. Let us first consider (2.13) for I = 0 and p = 0O It is sufficient to prove 
this inequality for h = 1. 

In [14] we have proved that 

(2.15) F(S' U)(cr) = Zj(o) z U(k) exp(i(k, a)), 

where 

(2.16) Z(c) = F((pi)(c) 

and 
n 

(2.17) (k, a) = E kjac. 
i-1 

By a well-known property of the Fourier transform, we have 

(2.18) 11F(Sl U)ILR.1 = (27rY IISS U,12 .. 

Hence, we may write 

(2.19) IIF(S'U)112R. = z f | U(k) exp(i(k, cv)) 2 IZi(v -1)1 dcv, 

where ah = {x; IxI < 1r}. Since there exists a C such that IZi(cv)12> C > 0 on gO, 
we have, from (2.19), 



4 IVO BABU6KA 

2 

(2.20) IIF(S1LU)II2 (Rn) > C] | U(k)exp(i(k,a0)) do ? C(2)rr |jU(k)12. 
kk 

From (2.20), (2.18) and (2.9), we obtain 

(2.21) ||SX UJIL.(R.) -> Cll UJI1099. 

From (2.19), we also have 
p ~~~~~~~~~2 

(2.22) L.(S u~l(R.) < E U(k) exp(iek, a) a?z2 

with 

(2.23) Zj = max IZi(o, - 1)1. 

From (2.6) it is clear that E, Z?, < Co. Therefore, 

(2.24) IIS'UIIL.(R) ; C||U||Qo4l 

Inequalities (2.21) and (2.24) together prove (2.13) for the case I = 0 and u = 0. 
Inequality (2.14) can be proved in the same manner. 

2. Let us now prove (2.13) for I = 0 and ,u 5 0. Let U E Q? and 
U,(k) = U(k)eP"kI. Using (2.13) for ,u = 0 and U,, we obtain, because of (2.9), 

2 

(2.25) J | I U(k)l e"IkIfi(x-k) dx k C 11 UIIQ1. 

On the other hand, we have 
2 

(2.26) IIS UI W2.1(Rn = | U(k) pi(x -k) e2p1 d 
Xnk 

Now since Vi(X) _ 0 for all x EE 1, and since vi has compact support, it follows from 
(2.26) that 

2 

1 1 SI ul I s^(n W20M :: M) I U(pi so - k) e2,1 z Idx 
(2 .27) Rn k 

< C j U(k), e" IkIi(x 
- k) dx. 

From (2.25) and (2.27) we obtain 

I I Sij U| I W2. 0(Rn) -< C| I U|lQ^ 

Now from (2.13) for ,u = 0, we have with C > 0, that 

Gi l Uj(lQ. .. ? C J I U(k)l eIkIfoi(x k)| dx 
2 

IRn 1 1 U(k) eIkI kpi(X - k) dx 1' 2~~~~~~~~~ 

=J'R~ 2 [U(k)eLz Iepi(x - k) + U(k)(e;IkI - e;zlI). pi(x k)] dx 

! 2[2II SU112.2 (R ) + u2 z IU(k)Ie"' Q'(x).oQ(x- k) dx 
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where IQk(x)j < C, independently of k. Hence, we have 

(2.28) CI UIIQ_,.1 ? 2[1IS, UII1 +-(R,) + j4Cjj IUNION] 

Therefore, 

(2.29) II : ? CIIS1 U1IW9.,e*a.)* 

for sufficiently small j1Aj. 
This proves (2.13) for the case I = 0 and is 0 0, j sufficiently small in absolute 

value. Inequality (2.14) can be proved for the case I = 0 and ,u d 0, ,u sufficiently 
small in absolute value, in the same manner. 

3. Let us now prove the theorem for I = 1. We have 

ax - 1 E U(kk) ( - ( Pi,'s -1 k)] ax. h khh 

(2.30) = (U(k + 1)- U(k))p .(x - k)] 

= E2 V(k)voj(-k)3 

where 

(2.31) V(k) = (U(k + 1)- U(k))/h. 

From (2.14) with I = 0, we obtain 

(2.32) C|| ll 5||ax, s I9@#Rn) 

8 C21 | VI W.p-A(Ri) - 

Inequality (2.14) follows immediately from (2.30), (2.31) and (2.32). This completes 
the proof of Theorem 2.1. 

3. Some Auxiliary Theorems about a Bilinear Form. Let 3e, - W j(R.) X 
W'2.,(R,,). Define on SC, the bilinear form A by 

(3.1) A(u, v) = f (I dx 4x + uv dx. 

We shall now prove some important properties of this bilinear form. 
THEOREM 3.1. For sufficiently small jIzj, 

(3.2) I A(u, v)I < CIIuIIW.,,1(R.)IIVII.W2..s1(R]n), 

(3.3) sup IA(uv)l 2 CIIvIIW2_P1(R%), 
I lur l ,l (j,)s9 

where C > 0 and 

(3.4) sup IA(uv)I 2 CIIUIIW9.pl(Rn), C > 0. 
I ( .t s e Wl ,,e by te f n i n)i 

Proof. 1. Inequality (3.2) is easily proved by the following inequalities: 
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I A(u, v)I = 
- 

+ e;& x'ue_"&1v') dx 

nF( 1u2 1112Ff(# av2 1/2 

(3.5) 4+ [f (e11) d x] [f (e(z 
l v a - dx] 

+ C| i Iu |W I U)2dX IeIVI 1 x lv(Rdx 
2. Let v E W2.-,,(R.) and let u = ve 2"1$x. By direct computation, we have 

(3.6) d(uxI) - e -2saI - 2,w~2PI#Iv sgn xi. 

Hence, 

I kUI IW.Wx(RB.) 

(3.7) ?!g 2[f [ e-4PIz(a?.) + 4ng2v2e'v "X + v2e4Plzje2I I]x 

Cl IV ||we. . ',1(R%) 
which implies that u E W2,,,(R"). Furthermore, 

I A(Ve-2o1W, V)i 

(3.8) = f | [Iv s [ xi 21 dx + 

WR. -,PI (LS) - 2.unv n x. dx(R .) +2R C| |v|, R 
Inequality (3.8), together with (3.7), proves (3.3). 

3. Replacing ,u by - A in the above discussion we have inequality (3.4). 
Let us prove a further theorem. 
THEOREM 3.2. For sufficiently small I1il, we have 

(3.9) |A(Sj Us, S. V)| I r C| ISI' U| W9 is' (Rs,) I IS" VI Iw.lx 
I IE UI I W. ,p Ws (R a) (3.10) SUP IA(S~U,, SJr)I 2! CIIS~Vjjw..,() 

and 

(3.11) sup |A(S U. S;V`)l 2 CllS UllwS.,P1(R*). 
I I 8 ijVI I W.. aws I 

Proof. 1. Inequality (3.9) follows immediately from (3.2). 
2. To prove (3.10), take V E Q' 4 and let U(k) = V(k)e2Mlklh, then 

n 

11 U112a,.A < 2h{ X E I V(k + 1,) - V(k)I2 e-21lklh 

(3.12) k i-1 

+ (2A)2C E I V(k)i2 e 2g1klh + E I V(k)12 e-2Iuklh 
b k 

which implies that 
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j j UljIQa.. I CII VIj 1Q.b.. 

Hence, by Theorem 2.1, we have 

(3 .1 3) | |S. U| |Ws .' (R., :!! C| |S t| |w .-'V............._1() 

Furthermore, 

| A(Sf U, S. V)V 

(3.14) |LR h [ V(k)rp,(( )] 

+ JR.. [~ V(k)e-2tk i(h - k)][> V(k)( -k)] dx' 

However, 

d X, EV(k)e-2IkIS oj(P k) 

(3.15) = E V(k + 1,)- V(k), k -2p lb 

- 2,u E V(k + 1i)jv,(. _ k)Qke 2pkht 

with Q, uniformly bounded, independently of k. Now we obtain 

(3.16) IA(&s U. SsV)j . C[fII VI12,a. - 2AsCI I VII 2a,] with C> 0. 

In fact, 

JR|. [E V(k)e2iIA; 11 i(P - k)][- V(k)(- m k) dx 

=f [e2 [? V(k)sp(- k)] 

+ [ V(k)o( - k)(e 2p^ku- e 2g I)][ V(k)pO(S - k)] dx. 

Using Theorem 2.1, we obtain 

f [? V(k)Pi(h - k)(e-2Pulkl- e 21isI)][ V(k)mp(- k)] dx 

f| [, I V(k)f spi(P k) IQ(j, x. k)I 2Mj[? I V(k)f -( k)]e2e d 

2C 11 V112lo_". , 

where Q(,u, x, k) is bounded independently of k because of the compact support of 
,Pj(X). By a similar argument, using (3.15), we obtain 

V~k)C ki~ 1 
V(k~pjr k) dx 

(3.1) J. [ ( - V(k)koi( - k)] dx + R 
JR-I.ae2 It h 
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with IRI ? 2AC IIVIIQi.&. Hence, for sufficiently small |,.|, we have 

(3.18) jA(SA U, S V)I > CiI VII 12 A > CIIS, VII 12.Pl(RR). 
From (3.18), using (3.13), we get-inequality (3.10). Inequality (3.11) is proved by 
changing ;z to -;z in the above discussion. 

This completes the proof of Theorem 3.2. 

4. The Finite Element Method and its Convergence. In [6] we proved the follow- 
ing two theorems. 

THEOREM 4. 1. Let H1 and H2 be two Hilbert spaces with scalar product (., )l and 
-)H., respectively. 
Let B(u, v), u E H1, v E H2, be a bilinear form on H1 X H2 such that 

(4.1) B(u,v) I."' C1IIUIIH. ||V||H., 

(4.2) sup IB(u,v)I 2 C2IIVIIH., 
| I UIIHISl 

and 

(4.3) sup IB(u,v)I ? C3IIUIIH1, 
IV I IH E.l 

with C1 < co, C2 > 0, C3 > 0. 
Let H2 be the space of bounded linear functionals on H2. Let f - HN. Then there 

exists exactly one element uo e H1 with 

(4.4) | |UO||H, -:| IV lIH. /C3, 

such that 

(4.5) B(uo, v) = f(v) 

for all v e H2. 

THEOREM 4.2. Let the assumptions of the Theorem 4.1 be fulfilled. Further, let M, 
and M2 be closed subspaces of H1 and H2, respectively. For every v E M2, let 

(4.6) sup |B(u,v)| _ d2(MM, M2) IIVIIH. 
I luiI H1S1 

with d2(M1, M2) > 0, andfor every u e M-lIet 

(4.7) sup |B(u,v)| _ d3(Ml, M2) IIUIJHf 
I IVDI IH S1 

with d3(Mb, M2) > 0. 
Let f C H2 be given and let uo denote that element of H1 for which 

(4.8) B(uo, v) = f(v) 

holds for all v e H2 (such an element exists and is unique by Theorem 4.1). 
Assume there exists w C M1 such that 

(4.9) j juo - WI IH1 <- . 

Furthermore, let go C M1 such that 

(4.10) B(0o, v) = f(v) 
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for all v elM2. Then 

(4.11) IIUo - a011& < [I + d3(M1, M2) 

We will utilize the Theorems 4.1 and 4.2 to analyze the solution of the equation 

(1.1) -Au + u = f. 

Let us first prove Lemma 4.1. 
LEMMA 4.1. Let f E W? -,(R;$), then 

(4.12) af ux _ 

Proof. For any f C C with compact support, 

AJdd u dx|=I f 
au 

dx| c ||filw. (RsX) I IU I Ie,> J8, x, R, xi 

The functions f C C' with compact support are dense in the space Wo,-,,(R,1), 
hence, (4.12) holds for all f E W?,-M(RP,). The following theorem will complete the 
preparation for the main results of the paper. 

THEORM 4.3. Let f Wl,,C(R,) 1 2 0, 1l sufficiently small. Then there exists 
exactly one solution u of Eq. (1.1) in W',,A, such that 

(4.13) |IUIIw,#.,+3(R.) < Cllf1W.P' ^(R.)* 

Proof. Since f C W2,.,(t), we have 

T,(u) = fu dx, IITII(ws.-,P(R%)), ? ll1f1w9.,*(R.) 

Using Theorems 4.1 and 3.1, we have 

11u11W2 .$ ,t,,) :5 C11f11w2. %*('R0) -. C11f11w,,^$g(J%)8 

Differentiating both sides of Eq. (1.1), using Theorems 4.1, 3.1 and Lemma 4.1, we 
obtain 

(9 
| -| ClIf |1 v. ?(R*,) -< C| {I I | I s,(* I (X i Waist# (Rn) 

Hence, 

I IUI IWs.,-(R.R) -< Cljjf| |W$.* I(R.) * 
By differentiating Eq. (1.1) 1 + 1 times and using induction, we obtain (4.13) for 
Eq. (1.1). 

Let us now describe the finite element method. Let f E W, O(R) and let +/(h) be a 
decreasing function of h defined for h > 0. Let 

(4.14) Uk,Pj(X) = E C(k>ip(x/h - k). 
Ikik S(h) 

Let us determine the coefficients C(k) such that 
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(4.15) A(U, = f fvdx 

for all v of the form (4.14). 
We can now prove the main theorem of the paper. 
THEOREM 4.4. Let f E W, (R&) and let #(h) = h'for any given e > 0. Let uO 

be the solution of (1.1) in W',((R.). 
Then on every compact domain S, 

(4.16) 1 1UO 
- Uh,j,i|1w~jL(u) < Ch l1lf11W""(-q.) 

for j 2 1 + 2, where 

(4.17) IIUIIW .(2) = f [z (dx) + U2] dx. 

Proof. From Theorem 4.3, we have u e W1+2 (R,). Therefore, uO 2 WI+ 2(R,) for 
, 0 also. Let us use a cut-off function x(x) C C' with x(x) = 1 for lxi _ 1 and 

x(x) = 0 for lxi > 2. Define xh. P(X) = x((4-t(h))-'3x) and uO h(X) = X,, +(x)uo(x). Then 

ZIO,%(X) = 0, for jx[ 2 41(h), 

UO h(x) - uo(x) = 0, for jxj < F/(I), 

and 

I IUO, 1h||Wqo+(R ) 
? 

ClIfIlw,.81(R.). 

In [14], we have shown that for j _ I + 2 there exist d(h, k) such that 

(4.18) uO h - d(h, k)50;(^ -k) < Cl1Uoh w...i+ (R()ha. h 
A;/ W2. .L (R") 

We have also shown that the support of 

w(x) = E d(h, k)( - k) 

lies in a Lh neighborhood of the support of uO, h, i.e. the support of w(x) lies in the set 
Q*= {x; xx < 241(h) + Lh}. Therefore, for h small enough, 

Qh. 0 = {x; |xI- | t_()} D Qh, 

For ,u < 0, I gu sufficiently small, we obviously have 

(4.19) Iluo - WIWw. ,v'(Rs) _ IIUO.h - WIw2,P1(Rn) + IIUO.h U-IW.,1(R.) 

C[h'- 
1 | 1W.| g(R.) + epo lfh W. 13*) 

since UOh - u = 0 for lxi < 14k(h). However, e*(h)/3 - e Ch1l1. Therefore, 

(4.20) 1(Uo - WIIWU, C(RR) = Chl+ IJljl IW,1C(R?), 

and hence, from Theorems 4.2 and 3.2, we have 

(4.21) I1uO - Uh .*illWS 1C'R.) 5 Ch'+' I1fIIW9..1(Rn), 

the desired result. 
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Let us count the number T of unknowns in (4.18) which we have to determine by 
solving a system of linear equations. It is clear that T is of the order h-"' 

Now let the "effective" H (see [7]) be defined by 

(4.22) H =()-1/n 

Thus H = hle. Hence, instead of (4.16), we may write 

(4.23) I|uO - UhP.i iw l(Q) < C(QE, Q)iH1 1111 '(,R.) 

=C(E, Q) T_ 
(1+ ) n 

W|2. 1 CR-) 

Now, by the same manner as in [7], we can show that the rate of convergence 
indicated in (4.23) is the highest possible rate of convergence on every compact 
domain, provided that we neglect the e. 

Institute for Fluid Dynamics 
University of Maryland 
College Park, Maryland 20742 

1. G. Fix & G. STRANG, "Fourier analysis of the finite element method in Ritz-Galerkin 
theory," Studies in Appl. Math., v. 48, 1969, PP. 265-273. MR 41 #2944. 

2. G. STRANG & G. Fix, "A Fourier analysis of the finite element variational method." 
(To appear.) 

3. G. STRANG, The Finite Element Method and Approximation Theory, Numerical Solu- 
tion of Partial Differential Equations. II (SYNSPADE, 1970), Academic Press, New York 
and London, 1971, pp. 547-585. 

4. M. ZLWMAL, "On the finite element method," Numer. Math., v. 12, 1968, pp. 394- 
409. MR 39 #5074. 

5. L. A. OGANESJAN & L. A. RUCHOVEC, "A study of rates of convergence of some 
variational difference schemes for elliptic equations of second order in a two dimensional 
domain with smooth boundary," Z. Vybisl. Mat. i Mat. Fiz., v. 9, 1969, pp. 1102-1119. (Rus- 
sian) 

6. I. BABUSvKA, Error Bounds for Finite Element Method, Technical Note BN-630, 
Institute for Fluid Dynamics and Appl. Math., University of Maryland, College Park, Md., 
1969; Numer. Math., v. 16, 1971, pp. 322-333. 

7. I. BABUSKA, The Rate of Convergence for the Finite Element Method, Technical 
Note BN-646, Institute for Fluid Dynamics and Appl. Math., University of Maryland, College 
Park, Md., 1970; SIAM J. Numer. Anal., v. 8, 1971, pp. 304-315. 

8. I. BABUSKA, Finite Element Method for Domains with Corner, Technical Note BN- 
636, Institute for Fluid Dynamics and Appl. Math., University of Maryland, College Park, 
Md., 1970; Computing, v. 6, 1970, pp. 264-273. 

9. I. BABUSKA, Numerical Solution of Boundary Value Problems by the Perturbed 
Variation Principle, Technical Note BN-624, Institute for Fluid Dynamics-and Appl. Math., 
University of Maryland, College Park, Md., 1969. 

10. I. BAUSKA, The Finite Element Method for Elliptic Equations with Discontinuous 
Coefficients, Technical Note BN-631, Institute for Fluid Dynamics and Appl. Math., Univer- 
sity of Maryland, College Park, Md., 1969; Computing, v. 5, 1970, pp. 207-213. 

11. I. BABUSKA, The Finite Element Method for Elliptic Differential Equations, Technical 
Note BN-653, Institute for Fluid Dynamics and Appl. Math., University of Maryland, College 
Park, Md., 1970, Numerical Solution of Partial Differential Equations. II (SYNSPADE, 
1970), Academic Press, New York and London, 1971, pp. 69-107. 

12. 0. C. ZIENKIEwIcz, The Finite Element Method in Structural and Continuous Me- 
chanics, McGraw-Hill, New York and London, 1970. 

13. Y. R. RASHID, On Computational Methods in Solid Mechanics and Stress Analysis, 
Conference on Effective Use of Comp. in the Nuclear Industry, Knoxville, Tenn., April 21-23, 
1969. 

14. I. BABUSKA, Approximation by Hill Functions, Technical Note BN-648, Institute for 
Fluid Dynamics and Appl. Math., University of Maryland, College Parn:, Md., 1970; Com- 
ment. Math. Univ. Carolinae, v. 11, 1970, pp. 787-811. 


